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Abstract
Adverse drug reactions can be caused by a wide range of therapeutics. Adverse drug

reactions affect many bodily organ systems and vary widely in severity. Milder adverse

drug reactions often resolve quickly following withdrawal of the casual drug or sometimes

after dose reduction. Some adverse drug reactions are severe and lead to significant organ/

tissue injury which can be fatal. Adverse drug reactions also represent a financial burden to

both healthcare providers and the pharmaceutical industry. Thus, a number of stakeholders

would benefit from development of new, robust biomarkers for the prediction, diagnosis,

and prognostication of adverse drug reactions. There has been significant recent progress

in identifying predictive genomic biomarkers with the potential to be used in clinical settings

to reduce the burden of adverse drug reactions. These have included biomarkers that can

be used to alter drug dose (for example, Thiopurine methyltransferase (TPMT) and azathi-

oprine dose) and drug choice. The latter have in particular included human leukocyte anti-

gen (HLA) biomarkers which identify susceptibility to immune-mediated injuries to major

organs such as skin, liver, and bone marrow from a variety of drugs. This review covers both

the current state of the art with regard to genomic adverse drug reaction biomarkers. We

also review circulating biomarkers that have the potential to be used for both diagnosis and

prognosis, and have the added advantage of providing mechanistic information. In the

future, we will not be relying on single biomarkers (genomic/non-genomic), but on multiple

biomarker panels, integrated through the application of different omics technologies, which

will provide information on predisposition, early diagnosis, prognosis, and mechanisms.
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Introduction

An adverse drug reaction (ADR) is defined by the World
Health Organization as “A response to a drug which is nox-
ious and unintended, and which occurs at doses normally
used in man for the prophylaxis, diagnosis, or therapy of
disease, or for the modifications of physiological function”.1

The majority of ADRs fall into the two broad categories:

• Type A – Reactions which are predictable from the
drug’s known pharmacology and typically result

from an augmented on-target pharmacological
response when given at a usual therapeutic dose.

• Type B – Reactions which are also termed idiosyn-
cratic and are not predictable from the known phar-
macological actions of the drug. These are typically
rare and safety signals are often not detected prior to
marketing.

As demonstrated in Table 1, ADRs can affect a significant
number of organ systems in the body and can range in
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severity from mild reactions (e.g. skin rash or mild liver
enzyme elevation) which resolve upon withdrawal of
thecausaldrugtosevere, life-threateningreactionsincluding
skin blistering reactions (Stevens-Johnson syndrome/ toxic
epidermalnecrolysis (SJS/TEN))andfulminant liver failure.

ADRs account for between 6.5% (hospital admissions)
and 25% (primary care) of attendances for medical treat-
ment, representing a significant burden on healthcare serv-
ices.23 This translates to a cost in excess of £1 billion every
year in the UK (with equivalent figures in other coun-
tries).24 Indeed, in the US, the figure has been estimated
to be as high as $30.1 billion.25 The financial burden on
pharmaceutical research and development is also signifi-
cant; between 1990 and 2013, 43 drugs were withdrawn
from market due to severe ADRs.26

From both a patient and healthcare perspective, there are
potential benefits in developing biomarkers for identifying
individuals predisposed to ADRs prior to initiation of
therapy. Biomarkers can also have a prognostic role in
determining the likelihood of recovery postreaction and
potentially in the development of severe sequelae (e.g.
ophthalmic complications postreaction in SJS/TEN survi-
vors) (Figure 1). This review covers the current knowledge
base of biomarkers of ADRs (both genomic and non-
genomic) and discusses potential advances and directions
for the development and implementation of new
biomarkers.

Genomic biomarkers

Pharmacodynamic/pharmacokinetic-related
genetic biomarkers

Polymorphisms in genes encoding drug metabolizing
enzymes or drug transporter proteins have been associated
with a number of type A ADRs (Table 2). Indeed, clinical
implementation guidelines exist for a number of drugs
where pharmacokinetic genetic variation can be critical in
determining the risk of an ADR. These include (but are not
limited to) TPMT and azathioprine/mercaptopurine-
induced bone marrow toxicity;27,28 CYP2D6 and codeine
(morphine)-related respiratory depression;29 and
SLCO1B1 and simvastatin-induced myotoxicity.30 An inter-
esting recent study has shown that a non-synonymous var-
iant in the SLCO2A1 gene, which encodes a prostaglandin
transporter, is associated with thiazide-induced
hyponatraemia.31

In addition to PK-related pharmacogenomic biomarkers,
some type AADRs are also associated with polymorphisms
in genes encoding pharmacodynamic targets. Perhaps the
most prominent example of this is the anticoagulant war-
farin which is indicated in the treatment of atrial fibrilla-
tion, deep-vein thrombosis, and pulmonary embolism. The
CYP2C9*2 and CYP2C9*3 polymorphisms in the gene-
encoding P4502C9, which is responsible for the metabolism

Table 1. Examples of immunogenetic biomarkers of ADRs by organ system.

System ADR Causal drug Indication Associated genetic variant References

Skin Hypersensitivity

(SJS/TEN/DRESS/

maculopapular

exanthem)

Carbamazepine

Phenytoin

Epilepsy HLA-B*15:02 (Han Chinese)

HLA-A*31:01 (Caucasian/Japanese)

HLA-B*15:02 (Han Chinese)

2

3,4

5

Allopurinol Gout HLA-B*58:01 6

Nevirapine HIV HLA-C*04:01

HLA-B*35:05 (Thai)

HLA-DRB1*01:01

7

7

7

Abacavir HIV HLA-B*57:01 8

Gastrointestinal Hepatotoxicity Flucloxacillin Gram þve bacterial

infection

HLA-B*57:01 9

Co-amoxiclav Bacterial infection HLA-A*02:01, DRB1*15:01-DQB1*06:02 10

Nevirapine HIV HLA-DRB1:01:01 11

Minocycline Bacterial infection HLA-B*35:02 12

Lapatinib Breast cancer HLA-DQA1*02:01/HLA-DRB1*07:01 13,14

Pancreatitis Azathioprine Rheumatoid arthritis,

Crohn’s disease

HLA-DRB1, HLA-DQB1 15

Renal Nephrotoxicity 5-aminosalicylic acid Inflammatory

bowel disease

HLA-DRB1*03:01 16

Hematological Agranulocytosis Clozapine Schizophrenia HLA-B/HLA-DQB1 17

Sulfasalazine Inflammatory joint/

bowel disease

HLA-B*08:01, HLA-A*31:01 18

Antithyroid drugs Hyperthyroidism HLA-B*27:05 (Caucasian)

HLA-B*38:02,

HLA-DRB1*08:03

(Han Chinese)

DRB1*08032 (Japanese)

19

20

21

Musculoskeletal Necrotizing

autoimmune

myopathy

Statins Hypercholesterolemia HLA-DRB1*11:01 22

ADR: adverse drug reaction; DRESS: drug reaction with eosinophilia and systemic symptoms; SJS: Stevens-Johnson syndrome; TEN: toxic epidermal necrolysis.
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of the active S enantiomer of warfarin, are a key determi-
nant of daily dose requirement in patients. Additionally,
a promoter region polymorphism (c.1639A>G) which
reduces the hepatic expression of vitamin K epoxide
reductase (VKORC1), the pharmacological target of
warfarin, is also strongly associated with warfarin dose
requirement. The combination of genetic polymorphisms
in the CYP2C9 and VKORC1 genes in fact accounts for
almost 50% of the variation in daily dose requirement.40

The translation of these findings into clinical practice
has been challenging,41 but a randomized controlled
trial in Europe has shown that genotype-guided dosing
was superior to the current standard of care in improving
overall anticoagulation control (including time in therapeu-
tic international normalized ratio (INR) range and reducing
overshoot to an INR> 4).37

Immunogenetic biomarkers

Many type B (idiosyncratic) ADRs, including SJS/TEN and
drug-induced liver injury (DILI), have an immune patho-
genesis. This is consistent with the fact that very strong
genetic associations between such reactions and individual
HLA genetic loci within the major histocompatibility com-
plex region on chromosome 6 have been reported (Table 2).
Indeed, for two of these associations (HLA-B*57:01
and abacavir hypersensitivity; and HLA-B*15:02 and
carbamazepine-induced SJS/TEN in some SE Asian popu-
lations), preprescription genotyping is recommended by
most regulatory agencies including the FDA. This has
been of clinical value since the incidence of these reactions
has shown a marked decrease where the genetic test has
been consistently implemented.42,43

Table 2. Examples of pharmacokinetic/pharmacodynamic genetic biomarkers of ADRs by organ system.

System ADR Causal drug Indication

Associated genetic

variation References

Skin SJS/TEN Phenytoin Epilepsy CYP2C9*2/*3 5

Gastrointestinal Hepatotoxicity Isoniazid Tuberculosis NAT2 slow acetylator 32

Hyperbilirubinemia Atazanavir HIV UGT1A1*28 33

CNS Respiratory depression Codeine (morphine) Analgesia CYP2D6 Ultrarapid

metabolizer

29,34

Renal Nephrotoxicity Tacrolimus Immunosuppressant CYP3A5*3/*6/*7 35

Hematological Bone marrow suppression Azathioprine Rheumatoid arthritis,

Crohn’s disease

TPMT*2/*3A/*3C/*4 27,28

Neutropenia Irinotecan Colorectal cancer UGT1A1*28 36

Cardiovascular Bleeding Warfarin Anticoagulant CYP2C9*2/*3, VKORC1 37

Myocardial infarction,

stroke, bleeding

Clopidogrel Antiplatelet CYP2C19*2/*3/*17 38,39

Musculoskeletal Myopathy Simvastatin Hypercholesterolemia SLCO1B1*5 30

ADR: adverse drug reaction.

Figure 1. Schematic of a typical delayed onset idiosyncratic ADR and indicative points at which theoretical predictive, prognostic, and diagnostic biomarkers could be

used for informing patient treatment decisions and care pathways. (A color version of this figure is available in the online journal.)

ADR: adverse drug reaction.
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An increasingly important issue to consider in the
implementation of pharmacogenetic testing is the cost-
effectiveness – this is vital to persuade the healthcare pro-
viders to pay for testing. There is now an increasing
number of such studies being performed; this requires the
collection of different types of data (including quality of
life) which can then be incorporated into health economic
models. Examples of tests which have been demonstrated
to be cost-effective includeHLA-B*57:01 for abacavir hyper-
sensitivity,44 HLA-B*15:02 and HLA-A*31:01 for carbamaz-
epine hypersensitivity,45,46 and TPMT for azathioprine.47 In
other situations, even though a test result may be highly
significant, the rarity of the ADR may make genetic testing
cost-ineffective. For instance, the antibiotic flucloxacillin,
which is widely used to treat Gram-positive bacterial infec-
tions, can lead to hepatotoxicity, which shows a strong asso-
ciation with the HLA-B*57:01 allelotype.9 However, the
incidence of flucloxacillin-induced liver injury is approxi-
mately 8.5 cases per 100,000 individuals,48 and it has been
estimated that in order to prevent one case of hepatotoxic-
ity, a total of 13,513 individuals would need to be tested.

Barriers to the clinical implementation of genomic
biomarkers of ADRs

Very few genomic markers have been translated into clin-
ical practice as pre-emptive screening tools to identify indi-
viduals at risk of ADRs. Although there is significant
evidence for many genetic associations with ADRs
(Table 1), lack of replication remains a key factor in ham-
pering translation of genomic biomarkers. Two key reasons
for the failure of genetic associations to progress beyond
discovery stage are:

a. Heterogeneity of phenotype definition between inde-
pendent studies: Many promising, biologically plau-
sible genetic associations of ADRs fail replicate in
part due to disparities in the clinical definition of
the phenotype. In order to overcome this, in recent
years a number of projects have been undertaken to
standardize ADR phenotypes including cutaneous
hypersensitivity,49 liver injury,50 Torsade de
Pointes,51 and statin-induced myopathy.52 Such stan-
dardization will help not only for replication but also
in undertaking meta-analyses of different studies.

b. Statistically underpowered studies: Many severe
ADRs are rare and by virtue of this, identification of
patients and recruitment to pharmacogenomic stud-
ies is challenging, requiring international collabora-
tive initiatives. Because of this, many ADR studies
tend to be small and statistically underpowered, par-
ticularly for replication purposes, where the odds
ratio in the original discovery set may be inflated.
Despite the smaller numbers of patients available, it
is important to note that pharmacogenetic association
traits, on average, have significantly larger effect sizes
than complex disease associations,53 and therefore
may find significant associations despite relatively

small (compared with complex disease studies)
sample sizes.

It is perhaps also important to note that genomic bio-
markers can also be used for purposes other than predic-
tion. Our recent paper has outlined the case as to how
genomic biomarkers can be used for diagnosis, selection
of patients, pre-emptive genotyping, and for understand-
ing mechanisms.41 Pre-emptive genotyping is now being
tested in several countries, and data on clinical outcomes
are keenly awaited.54 Indeed, as whole genome sequencing
becomes more widespread, a wider perspective on how
genetic tests can be used in practice will help to improve
the benefit–risk ratio of medicine and in implementing pre-
cision medicine in its broadest sense.

Genomic biomarkers of ADRs: Opportunities

Common genetic variants represent the “low hanging
fruit” as predictive risk factors for ADRs but it is clear
that there is still a significant degree of interindividual var-
iability in drug response that cannot be accounted for by
our existing knowledge of genetic and non-genetic risk fac-
tors. Efforts in a number of research areas have the potential
to shed light on this unexplained variability.

Rare variants

With the increased availability of sequencing technologies
has come the ability to type patients for rare genetic var-
iants (minor allele frequency <1%) and assess the role they
may play in predicting ADRs. Warfarin is an example
where pharmacogenetic (CYP2C9 and VKORC1) and non-
genetic determinants account for approximately 60% of the
dose requirement,55 with 40% of the variability unex-
plained. It is plausible that rare variants in both known
and as yet unknown gene loci may play a role in warfarin
response, particularly in individuals with extreme pheno-
types, i.e. requirement of either very low or very high daily
warfarin doses. Furthermore, twin studies of the pharma-
cokinetic variability of torsemide and metoprolol56 have
shown that only around 40% of the genetic variability can
be explained by known genetic polymorphisms. Recent
work by Kozyra et al.57 has indicated that between 30%
and 40% of the variability in pharmacogenes is due to
rare variants.

Metagenomic risk factors for ADRs

There is growing interest in the role of the human micro-
biome in predicting drug response.58 More than 50 drugs
are known to be metabolized by the microbiome (by hydro-
lysis or reduction in the majority of cases).59 Examples
include soruvidine, lovastatin, and paracetamol.
Theoretically, this could alter their disposition in the host
and potentially lead to lack of efficacy or predisposition to
adverse effects. Whether the microbiome, in the gut and
other locations, has a significant role in explaining the miss-
ing variability with different drugs requires further study.
For instance, with the antidiabetic agent metformin, there is
evidence that modulation of the gut microbiome is
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responsible, at least partly, for its therapeutic effects.60

Whether disturbance in the gut microbiome is also respon-
sible for its common adverse effect of GI intolerance
requires further study.

Multiomics/systems biology approaches

Genomic biomarkers clearly still have much to offer for
predicting ADRs. However, alternative but complementary
omics technologies need to be considered both in insolation
but also within an integrated multiomic/systems biology
framework.61 This will allow the identification of com-
plexed multifaceted traits which predispose to ADRs but
also uncover novel mechanistic biological pathways with
the potential to yield novel biomarkers of both a genetic
and non-genetic nature.

Circulating protein and nucleic acid
biomarkers

Biomarkers of generalized tissue injury applicable
to ADRs

A plethora of “traditional” circulating protein biomarkers
which correlate with specific tissue injury, regardless of eti-
ology, can be used for diagnosis of ADRs, and in some
cases, for determining prognosis (Table 3). Typical exam-
ples include plasma alanine transaminase (ALT) and aspar-
tate transaminase (AST) for liver injury and serum
creatinine for kidney injury. While these markers of tissue
injury have been used for many years, they can have lim-
itations in terms of sensitivity (they become elevated only
when a significant proportion of the organ is damaged) and
specificity (they can be produced by multiple organ or mul-
tiple toxic insults). Additionally, in the context of ADRs,
they are also limited in informing as to the specific mech-
anism of toxicity or the affected cell type within an organ
system. A typical example is serum creatine kinase (CK)
where a level of >4�upper limit of normal (ULN) has
been used for diagnosing muscle toxicity associated with
the use of statins.52 CK elevation can occur due to a number
of commonly occurring events including strenuous exer-
cise62 and trauma.63 In addition, other unrelated comorbid-
ities such as myocardial infarction can also cause CK
elevation.64 Broadly speaking, CK elevation thus offers
low specificity for diagnosing statin myopathy and gives
little indication of the specific mechanisms of statin
myopathy.

By contrast, recent advances in biomarkers for the detec-
tion of DILI serve as a paradigm for how novel markers can
have significant advantages over traditional markers for
diagnosing and understanding the etiology of an ADR.
Of particular promise is serum miR-122, which has been
shown to be a highly specific marker for acute hepatocyte
injury in paracetamol overdose82 and more sensitive than
traditional liver function tests for early toxicity detection.
However, further work is required to determine the utility
of miR-122 as a diagnostic/prognostic marker of late-onset
idiosyncratic DILI. Evidence for other miR as diagnostic
tools for ADRs is currently low, although a number of
other putative miR biomarkers have been reported,

including miR-12469 and miR-18a-5p70 for SJS/TEN.
Understanding how and when miRs become elevated
also provides an opportunity to gain insight into the spe-
cific cell source and pathogenesis of the injury. This may
also help in the future in drug development during both
preclinical toxicology testing and early phase human trials.

Mechanistic biomarkers

The field of kidney injury research is perhaps the best
example of how a new generation of biomarkers has the
potential to provide not only early sensitive detection of
renal toxicity but also provide information as to the specific
site of injury within the nephron.83 The additional informa-
tion could have tremendous potential benefits to both drug
development and healthcare professionals. This sort of
mechanistic approach to biomarker discovery could cer-
tainly be applied to other tissues/organs commonly affect-
ed by ADRs where toxicity may be specific to particular cell
types such as the liver and gastrointestinal (GI) tract.

High Mobility Group Box-1 (HMGB1) is a biomarker
which has significant potential as a prognostic mechanistic
biomarker for ADRs. HMGB1 is an example of a Damage
Associated Molecular Pattern molecule, which is critical in
linking cell death to inflammation and in the progression of
disease. HMGB1 sits at the intersection between infectious
and sterile inflammation. HMGB1 is actively released in an
acetylated form from activated immune cells and passively
released in the non-acetylated form during necrotic cell
death.84 Furthermore, the HMGB1 molecule can exist in
three redox states, each of which infers a different physio-
logical function related to the innate immune response.
Disulfide HMGB1 has been demonstrated to engage with
MD2 as part of the toll-like receptor 4 (TLR4) complex on
monocytes in order to elicit cytokine induction85 while the
fully reduced isoform is thought to interact with CXCL12 to
engage with CXCR4 to induce chemotaxis.86 Work under-
taken in patients with liver damage who have overdosed on
acetaminophen has shown that early elevation of HMGB1,
in patients with normal ALTs, was able to predict more
severe forms of liver injury later during the course of the
overdose.82

Total serum HMGB1 is also elevated in a number of
immune-mediated type B ADRs including DRESS,87 SJS/
TEN,68 and in principle DILI.88 HMGB1 isoforms could the-
oretically be utilized for early distinction of hypersensitiv-
ity reactions leading to significant tissue injury (e.g. SJS/
TEN) as opposed to milder phenotypes (maculopapular
exanthem), but more work needs to be done on this.

Identifying and implementing diagnostic biomarkers
which can predict the onset of ADRs (Figure 1) is clearly
of benefit to both patients and healthcare professionals.
However, in some examples, such as SJS/TEN, severe
long-term sequelae can occur a significant time after the
acute reaction and subsequent drug withdrawal.89

Although at present no examples exist, the development
of prognostic biomarkers for prediction of these sequelae,
which can include vision loss, has the potential to provide
tools to improve treatment decisions and clinical care
pathways.
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Conclusions

While much progress has been made in identifying predic-
tive genomic biomarkers of ADRs, only a small number have
been translated to clinical practice.With the increasing use of
sequencing technologies, greater focus is being placed on the
role of rare variants in ADR predisposition. Additionally,
other omics technologies are likely to yield significant bio-
markers for ADRs in the future. A new generation of circu-
lating biomarkers of ADRs, typified by miR-122 and
HMGB1, have great potential as highly specific and sensitive
diagnostic and/or prognostic markers. The example of renal
toxicity highlights the potential of using panels of bio-
markers as indicators of specific cellular or tissue sites of
injury and provide greater mechanistic understanding of
ADRs. Application of this mechanistic approach to other
target organs of ADRs (liver, skin, GI tract) could yield sub-
stantial benefits in producing robust biomarkers for the ben-
efit of patient care and future drug development pipelines. It
is likely that in the future we will not be relying on single

biomarkers (genomic/non-genomic), but on multiple bio-
marker panels, integrated through the application of differ-
ent omics technologies, which will provide information on
predisposition, early diagnosis, prognosis, and mechanisms.
This is however likely to introduce huge complexity in terms
of the evidence that will be required for regulation and clin-
ical implementation, and in the interpretation of these com-
plex tests for clinical care of patients. This will need to be
aligned to studies of cost-effectiveness and inclusion in clin-
ical guidelines, as well as education and training of new and
existing healthcare professionals.
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Table 3. Clinically utilized and putative biomarkers of ADRs.

System ADR Biomarker Tissue/fluid Indicative of

Currently utilized

for diagnosis/

prognosis References

Skin Hypersensitivity

(SJS/TEN/

DRESS/rash)

C-reactive protein Serum Non-specific inflammation Y 65

Granulysin Blister fluid N 66

Interleukin-15 Serum Innate immune response N 67

HMGB1 Serum Sterile tissue injury/

innate immune

response

N 68

miR-124 Serum/skin Unknown N 69

miR-18a-5p Serum/skin Unknown N 70

Gastrointestinal Hepatotoxicity Alanine transaminase

(ALT)/aspartate

transaminase (AST)

Serum Hepatocellular injury Y 71

Alkaline phosphatase

(ASP)

Serum Hepatic bile canaliculi

cell injury

Y 71

Bilirubin Serum Hepatic injury/biliary

obstruction but also

extrahepatic disorder

Y 72

HMGB1 Serum Sterile tissue injury/

innate immune response

N 73

miR-122 Serum Hepatocyte-specific

cell injury

N 24,74

Cytokeratin-18 Serum Apoptotic/necrotic

hepatic cell death

N 75

Lower GI toxicity C-reactive protein Serum Non-specific inflammation Y 76

Lactoferrin Fecal Inflammation Y 77

Calprotectin Fecal Inflammation Y 78

Renal Creatinine Serum Glomerular filtration

rate and proximal

tubular secretion

Y 79

Cystatin-C Serum Glomerular filtration

rate and proximal

tubular secretion

Y 80

NGAL Urine Proximal and distal

tubule secretion

N 81

KIM-1 Urine Proximal Tubule N 90

Musculoskeletal Myopathy/

rhabdomyolysis

Creatine kinase Serum Skeletal muscle

injury but also

cardiac muscle injury

Y 52

GI: gastrointestinal; HMGB1: High Mobility Group Box-1; N: no; Y: yes.

N-GAL: Neutrophil gelatinase-associated lipocalin; KIM-1: kidney injury molecule 1.
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